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In this article, we considered experimentally the deformation and breakup of New-
tonian and non-Newtonian conducting drops in surrounding fluid subjected to a
uniform electric field. First, we examined three distinctive cases of Newtonian-fluid
pairs with different relative conductivities, namely highly conducting drops, con-
ducting drops and slightly conducting drops. The results on the Newtonian fluids
demonstrated that when the conductivity of the drop is very large relative to that
of the surrounding fluid, the deformation response of such highly conducting drops
is described well by the electrohydrostatic theory, especially with regard to the pre-
diction of the critical point. Specifically, when the ratio of drop to continuous-phase
resistivity, R, was less than 10−5, the electrohydrostatic theory was quite satisfactory.
Then, the non-Newtonian effect on the drop deformation and breakup was studied
for highly conducting drops which satisfied the condition R < O(10−5). The highly
conducting drop became stable in a weak or moderate field strength when either the
drop or the continuous phase was non-Newtonian. On the other hand, when both the
phases were non-Newtonian, more complicated responses were observed depending
on the ratio of zero-shear-rate viscosities. Although the effects of the rheological
properties are minimal on all features away from the critical conditions for breakup
or prior to the instability, the non-Newtonian properties have a significant influence
during drop burst, which is accompanied by large velocities and velocity gradients.
In particular, when the ratio of the zero-shear-rate viscosity of the drop to that of
the ambient fluid was much larger than unity, non-Newtonian properties of the drop
phase enhanced the drop stability. Conversely, the elasticity of the continuous phase
deteriorated the drop stability. Meanwhile if the zero-shear-rate viscosity ratio was
much smaller than unity, the elasticity of the continuous phase produced a stabilizing
effect. The effects of resistivity and viscosity ratios on the breakup modes were also
investigated. When at least one of the two contiguous phases possessed considerable
non-Newtonian properties, tip streaming appeared.

1. Introduction
When a fluid drop is suspended in another immiscible fluid, it can be influenced

by an externally applied uniform electric field in many ways. Apart from its basic
scientific interest, understanding of the behaviour of drops in an electric field is
playing an increasingly important role in practical applications. For example, some
of the early studies were motivated by the fact that the drop dynamics in an
electric field is of practical significance in birefringence, light scattering, and other
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optical measurements of emulsion systems (O’Konski & Thacher 1953; O’Konski
& Harris 1957). Part of the interest stemmed also from applications including the
deformation and breakup of raindrops in thunderstorms and the breakdown of
dielectric liquids due to contaminants such as the water droplets with a substantial
conductivity (Sartor 1969; Beard, Ochs & Kubesh 1989). The electric-field-driven flow
is of practical significance in the processes in which enhancement of the rate of mass
or heat transfer between the drops and their surrounding fluid is desired (Scott 1989;
Ptasinski & Kerkhof 1992; Ha & Yang 1999a). The problem is also relevant to some
aspects of containerless material processing in micro-gravity conditions (Rhim et al.
1987; Chung & Trinh 1998). Krause and co-workers reported the use of electric fields
to control polymer blend morphology, more specifically the shape and orientation of
the dispersed phases (Venugopal, Krause & Wnek 1989; Venugopal & Krause 1992;
Xi & Krause 1998; Ha & Yang 1999b). More recently, the electrohydrodynamic
behaviour of liquid–liquid dispersion systems has been studied rigorously as a new
model of electrorheological fluid (Tajiri et al. 1997; Pan & McKinley 1997; Ha &
Yang 1999c). It has been also suggested that the electric field is very effective in
biomechanical processes such as cell fission induced in the laboratory with less heat
dissipation (Marszalek & Tsong 1995; Winterhalter et al. 1996).

There are two simple limits when considering the effect of an external electric
field on the drop dynamics. If the two contiguous fluids are considered as perfectly
insulating dielectrics and no free charges are present, or if, on the other hand, the
drop contains a fluid that is highly conducting while the surrounding fluid is perfectly
insulating, an electric field induces a net force at the fluid interface as a result of
discontinuity in the electric stresses (Melcher & Taylor 1969). Because this electric
surface force acts only in the direction normal to the interface, it can be balanced
by the interfacial tension. Therefore, the drop is always elongated into a prolate
shape with its axis of symmetry parallel to the direction of the applied field, while
the fluids remain motionless at a steady state. These ideal situations of electrified
drops have been extensively studied within the well-established theoretical framework
of electrohydrostatics (for example, O’Konski & Thacher 1953; Garton & Krasucki
1964; Taylor 1964; Miksis 1981; Basaran & Scriven 1989; Basaran & Wohlhuter
1992; Wohlhuter & Basaran 1992; Stone, Lister & Brenner 1999).

When finite conductivity of fluid is considered, the problem becomes more inter-
esting yet complicated. One of the most noteworthy phenomena is that, in addition
to the prolate shape predicted by the electrohydrostatic theory, a drop in an electric
field may remain in a spherical shape or even be deformed into an oblate spheroid
as observed in experiments (Allan & Mason 1962; Torza, Cox & Mason 1971; Arp,
Foister & Mason 1980; Vizika & Saville 1992; Ha & Yang 1995). Taylor (1966)
recognized that finite conductivity enables electrical charge to accumulate at the drop
interface, permitting a tangential electric stress to be generated. The tangential electric
stress drags fluid into motion, and thereby generates hydrodynamic stress at the drop
interface. The complicated interplay between the electric and hydrodynamic stresses
causes either oblate or prolate drop deformation, and in some special cases keeps the
drop from deforming. This electrohydrodynamic theory proposed by Taylor is referred
to as the leaky dielectric model, and is capable of predicting the drop deformation in
qualitative agreement with the previous experimental observations.

Although Taylor’s leaky dielectric theory provides a good qualitative description for
the deformation of a Newtonian drop in an electric field, the validity of its analytical
results is strictly limited to the drop experiencing small deformation in an infinitely
extended domain. Extensive experiments conducted by Torza et al. (1971) showed
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a serious quantitative discrepancy with Taylor’s theoretical prediction. Drops were
found to be consistently more deformed than would be expected from the theoretical
prediction. Furthermore, when the drop phase is less conducting than the ambient
fluid, the less conducting drop executes so-called electrorotation even in a uniform
electric field (Ha & Yang 1999d). To resolve the quantitative discrepancy between
theory and experiment, Ajayi (1978) extended the linearized asymptotic model of
Taylor to include higher-order corrections for the nonlinear terms. Although Ajayi’s
asymptotic theory predicted the drop deformation more accurately, the higher-order
corrections were found to be insufficient to remove fully the discrepancy. To examine
electrokinetic effects, the leaky dielectric model was replaced by a model which
considered the charge transport (Baygents & Saville 1989; Saville 1997; Feng 1999).
Even though the microscale motions and diffused charge layers were more accurately
described, the calculated drop deformation turned out to be exactly the same as that
given by the leaky dielectric model. Thus, the leaky dielectric model is accepted as a
correct lumped-parameter model when no net charge exists on the drop. Since none of
the obvious theoretical extensions seemed to be able to resolve the serious discrepancy,
Vizika & Saville (1992) performed a rigorous experimental investigation. Although
certain discrepancies remained for some cases, their results appeared to agree with
the asymptotic leaky dielectric prediction better than the previous experiments.

While the asymptotic leaky dielectric theory gives a satisfactory description for
the behaviour of a conducting Newtonian drop in an insulating medium within the
small deformation limit, the electrohydrostatic theory predicts more readily the critical
electric field strength above which the drop loses its stable configuration. It has been
shown that Taylor’s (1964) spheroidal approximation is in good agreement with more
rigorous numerical methods if the drop is perfectly conducting. Recently, Feng &
Scott (1996) reported a computational analysis for the deformation and stability of
a leaky dielectric drop in a uniform electric field. Although agreement between the
experimental results and the theory improved considerably, their result reduced to
Taylor’s when the drop was perfectly conducting.

Although Newtonian fluids are ubiquitous in practical applications, non-Newtonian
fluids also appear in myriad important applications. These fluids contain high-
molecular-weight polymers and are characterized by nonlinear stress–strain rela-
tionships, elasticity, and finite time scales for stress relaxation. Unlike the Newtonian
fluids, there are few available theoretical investigations which pertain to the defor-
mation and stability of the interface between the non-Newtonian fluids in an electric
field. This is mostly because of the anticipated uncertainties in selecting an appropri-
ate constitutive model for non-Newtonian fluids, as well as the obvious difficulty in
solving the equations of motion after the choice has been made. Instead, in the present
study, we consider experimentally the effect of non-Newtonian properties on the drop
deformation and breakup, and identify the role of the non-Newtonian response by
comparing the deviations from the well-known theories or experimental observations
for a Newtonian-fluid pair.

In the remainder of this paper, we report a series of experiments to elucidate the
effect of non-Newtonian properties of the constituent fluids on the drop deformation
and breakup in an electric field. The main objective of our study on non-Newtonian
polymeric drops is to elucidate the effect of non-Newtonian properties on the critical
point above which the drop loses its stable configuration. If we have a reliable
theory that accounts for the elastic or viscoelastic nature of fluids successfully, the
experimentally observed non-Newtonian responses may be explained based on the
theory. Unfortunately, this approach cannot be easily accomplished due to the fact
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that the systematic theoretical interpretation of non-Newtonian properties of the
fluids is extremely difficult. Another approach is purely experimental, that is, a direct
comparison of non-Newtonian drops with Newtonian drops possessing exactly the
same electrical and viscometric properties except for some elastic or viscoelastic
characteristics. This is also difficult to achieve because we cannot control each fluid
property independently. While a lot of theoretical works on Newtonian drops are
available in literature, especially for the critical point of perfectly conducting drops
for which electrohydrostatic theory is applicable, the validity of the critical point
predicted from the electrohydrostatic theory has not been yet completely proved for
a wide range of electrical properties of fluids. In the present study, we determine
the range of the resistivity ratio R within which the electrohydrostatic theory is
valid for the Newtonian-fluid pair, especially for the prediction of the critical point.
Then, we consider the responses of highly conducting non-Newtonian drops for which
electrohydrostatics is valid. In this case, the deviation from Newtonian fluid behaviour
can be regarded as a consequence of non-Newtonian characteristics. As we shall see
shortly, the non-Newtonian effect on the drop dynamics is successfully identified on
the basis of electrohydrostatics at least qualitatively. In addition, we clearly observe
deformation and breakup modes of the non-Newtonian drops which are distinctively
different from the Newtonian cases.

2. Experimental
2.1. Apparatus and procedures

The experimental apparatus and the procedures were identical to those of our previous
study (Ha & Yang 1998). The drop phase was formed by dispensing an exact volume
of fluid by an accurate micropipette. The typical volume of the initially undeformed
drop was 10 µl, or equivalently 0.134 cm in radius. Since the densities of the two
contiguous phases were matched, buoyancy effects were excluded.

After the drop was placed in the middle of the two copper-plate electrodes, the
electric field was applied by a high-voltage power supply (Glassman High Voltage Inc.,
Series EH). A CCD camera (Watec Inc., Wat-201) equipped with microscopic lenses
was used to take images of the deformed drop shape, which were recorded by a VCR
and captured by a frame grabbing board, if necessary. The degree of deformation at
a given electric field strength was calculated from the captured images. The degree of
drop deformation can be expressed conveniently by the parameter defined by

D =
(L− B)

(L+ B)
, (2.1)

in which L and B are the drop lengths parallel and perpendicular to the electric field,
respectively. This parameter is especially sensitive to small deviations from sphericity.
In the present experimental study, none of the steady-state drop shapes were highly
elongated and D was used exclusively to define the deformed drop shapes. After
determining the critical electric field strength above which no steady-state shape of
drop existed, the drop breakup modes were studied. The time-dependent deformation
of the drop was continuously recorded through the CCD camera at slightly higher
electric field strength than its critical value.

2.2. Measurement of material properties

The electrical properties of the fluids in this study were measured by a similar
method to that reported by Vizika & Saville (1992) for the measurement of dielectric
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constants. Two copper electrodes of 5 cm in radius were separated by a 0.1 cm gap.
With this cell, the dielectric constants were calculated from the measured capacitance.
The contribution from the empty cell was considered using standard materials such
as hexane, glycerol, and ethyl alcohol. Since one of the objectives of this study is
to find the condition for validity of the electrohydrostatic theory, the conductivities
of the fluids and their dependence on the electric field strength are important.
Ordinary conductivity meters were not appropriate for leaky dielectric materials such
as silicone oil and polybutene solutions used as an insulating continuous phase. A
very high voltage was required when the cell was filled with a low-conductivity fluid
and the current through the circuit could be measured only by a sensitive ammeter
(Yokogawa Electric Corp., Model 2011). Through the voltage–current relationship,
the fluid conductivity was estimated. Obviously, this method does not provide the
exact value of the fluid conductivity, but gives sufficient information since the relative
magnitude of the electrical properties between the drop and the continuous phases is
much more important rather than their individual values.

The rheological properties of the fluids used here were measured by ARES fluid
rheometer (Rheometric Scientific Inc.). The viscosities were measured for shear rates
ranging from 0.1 s−1 to 100 s−1. The elastic nature of non-Newtonian polymeric fluids
was interpreted usually via the normal stress difference. One of the difficulties involved
in the study of non-Newtonian fluids arises from the fact that the viscosity µ is not a
unique quantity (Bird, Armstrong & Hassager 1987). Specifically, the shear viscosity
differs from the extensional viscosity, both of which are usually influenced by the
rate of deformation. Therefore, the shear viscosity of a fully viscoelastic fluid exhibits
shear-thinning behaviour. Herein, we defined the viscosity ratio λ in terms of the
steady shear viscosity instead of the extensional viscosity. For the shear-thinning
fluids, we defined the ratio of the viscosity, λ, of the drop phase to that of the ambient
fluid in terms of the zero-shear-rate viscosities exclusively. As we shall see later,
the neglect of shear dependence of the viscosity does not oversimplify the problem,
especially for the conducting drops, since the electric-field-induced flow is too weak
to induce an appreciable rheological effect. Under these circumstances, the role of
non-Newtonian effects arises from the fluid elasticity. This is especially true when the
field strength is below its critical value or prior to the instability.

The determination of the interfacial tension, γ, is not easy because the fluids used in
this study are very viscous and have almost the same densities. Therefore, conventional
techniques for interfacial tension measurements such as the pendant drop, ring or
plate methods are not appropriate. One simple way to estimate the interfacial tension
is based on the small deformation theory describing the relationship between the
degrees of drop deformation and electric field strength (Taylor 1966), i.e.

D =
9

16(2R + 1)2

[
(1 + R2 − 2SR2) + 3R(1− SR)

2 + 3λ

5 + 5λ

]
aεE2

γ
, (2.2)

where R, S and λ denote the ratios of resistivity, permittivity and viscosity of the
drop to those of the continuous phase, respectively. In addition, a is the radius of
the initially spherical drop, ε is the permittivity of the continuous phase and finally,
E is the electric field strength. Thus, Taylor’s theory for the drop deformation in a
weak electric field may offer a convenient measure of the interfacial tension. In the
present study, Taylor’s small deformation theory was used to obtain the interfacial
tension. Therefore, as we shall see shortly, the experimental deformation data and
theory coincide at small deformations. The dimensionless group, aεE2/γ is sometimes
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referred to as the dimensionless electric field strength or the electric capillary number†,
(C), due to the analogy with the capillary number, µuc/γ, which is frequently used in
studies of drop dynamics under external flow fields in the low Reynolds number limit.
In fact, the characteristic velocity uc is given by aεE2/µ for electrohydrodynamic flow.

Meanwhile, although Taylor’s theory is valid strictly for the case of Newtonian
fluids, it is not applicable in general when at least one of the fluids is viscoelastic.
However, the first correction to Taylor’s theory taking into account the viscoelastic
effects occurs at the order of Deborah number. In the small deformation limit,
therefore, the viscoelastic correction is expected to be small because the electric-field-
driven flow is very weak at modest electric field strength.

3. Deformation and breakup of Newtonian drops suspended in
Newtonian fluid

3.1. Materials

In the present section, we consider the deformation and breakup of Newtonian fluid
drops suspended in another Newtonian fluid in a uniform electric field. The primary
objective of this section is twofold: first, to determine the range of resistivity ratios
R within which the electrohydrostatic theory is applicable, and then to examine the
effect of viscosity ratio λ or resistivity ratio R on the breakup modes. The Newtonian
results are expected to provide a basis on which the breakup behaviour of elastic or
viscoelastic fluid drops can be considered.

To elucidate the effect of viscosity ratio, silicone oils of various viscosity grades
were prepared. Silicone oils B, C, and E were obtained by mixing highly viscous
silicone oil (KF-96, 10000 cS) with a less viscous one (KF-96, 50 cS) both purchased
from Shin-Etsu Silicone. Other properties of silicone oil apart from viscosity were
not changed appreciably. To examine the effect of the ratio R of drop to continuous-
phase resistivity, we prepared three types of fluid samples, namely highly conducting
fluids (R < 10−5), conducting fluids (R ∼ 10−4) and slightly conducting fluids (R ∼
10−1). Table 1 contains the experimental runs and relevant parameters for each
experimental system. For highly conducting drops, we prepared deionized water
(W1), an aqueous solution of potassium chloride (W2), and a mixture of water, ethyl
alcohol and dissolved polyvinylpyrrolidone (N1). As a second class of conducting fluid,
a mixture of glycerine–ethyl alcohol (N2) and glycerine–propanol (N3) was prepared.
In addition, three polymeric Newtonian solutions (N3A, N3B, N3C) were formed
by dissolving 3, 7, 15 wt% of polyvinylpyrrolidone in a glycerine–propanol mixture,
respectively. Although polymeric in nature, the polyvinylpyrrolidone (PVP) solutions
behave as a Newtonian fluid over the shear-rate ranges of viscosity measurement.
Finally, we chose castor oil as an example of a leaky dielectric drop possessing slightly
higher or comparable conductivity relative to that of the ambient fluid.

3.2. Deformation and breakup of Newtonian drops

Let us then begin by considering the deformation and stability of a drop which is
highly conducting compared with the suspending fluid. In figure 1(a), the degree of
deformation D is plotted versus the electric capillary number, C, for the case of both

† Sometimes, the dimensionless group has been referred to as the electrical Weber number. As
one of the referees indicated, the Weber number may be an inappropriate definition in this problem
where the inertial force is not important. On the other hand, as employed by others (Kang 1993;
Cho et al. 1996), the electrical Weber number is probably correct when the inertia is significant.



Drop deformation and breakup in an electric field 137

Continuous Interfacial
System Drop phase phase R S λ tension (N m−1)

NN1 W2 SD < 10−8 31.1 0.001 0.0310
NN2 W1 SD < 10−6 28.2 0.001 0.0284
NN3 N1 SA < 10−5 19.8 0.004 0.0058
NN4 N1 SB < 10−5 19.8 0.006 0.0059
NN5 N1 SC < 10−5 19.8 0.014 0.0058
NN6 N1 SD < 10−5 19.8 0.043 0.0054
NN7 N1 SE < 10−5 19.8 0.006 0.0053
NN8 N2 SA ∼ 10−4 12.9 0.016 0.0040
NN9 N2 SB ∼ 10−4 12.9 0.022 0.0039
NN10 N2 SC ∼ 10−4 12.9 0.053 0.0040
NN11 N2 SD ∼ 10−4 12.9 0.160 0.0037
NN12 N2 SE ∼ 10−4 12.9 0.175 0.0038
NN13 N3 SD ∼ 10−4 12.9 0.050 0.0025
NN14 N3A SD ∼ 10−4 13.7 0.083 0.0027
NN15 N3B SD ∼ 10−4 13.7 0.175 0.0029
NN16 N3C SD ∼ 10−4 14.0 0.542 0.0036
NN17 CO SA ∼ 0.1 1.37 0.080 0.0040
NN18 CO SB ∼ 0.1 1.37 0.111 0.0037
NN19 CO SC ∼ 0.1 1.37 0.266 0.0038
NN20 CO SD ∼ 0.1 1.37 0.800 0.0034
NN21 CO SE ∼ 0.1 1.37 0.874 0.0033

Table 1. The list of experimental runs for the deformation and breakup of Newtonian drops
suspended in another Newtonian fluid. (W1: deionized water, W2: 0.1 M KCl aqueous solution, N1:
1 wt% polyvinylpyrrolidone solution in water–ethanol mixture, N2: glycerine–ethanol mixture, N3:
glycerine–propanol mixture, N3A, N3B, N3C: 3, 7, 15 wt% polyvinylpyrrolidone solution in N3,
CO: castor oil, SA: silicone oil A, µ = 9.80 Pa s, SB: silicone oil B, µ = 7.04 Pa s, SC: silicone oil C,
µ = 2.95 Pa s, SD: silicone oil D, µ = 0.98 Pa s, SE: silicone oil E, µ = 0.90 Pa s)

a water drop (W1) and a drop of very highly conducting aqueous potassium chloride
solution (W2) dispersed in silicone oil D. In this case, the resistivity ratio R < O(10−6)
and thus this is the case of highly conducting drops in an almost insulating medium.
Also included for comparison is a deformation curve of Feng & Scott (1996) for
a perfectly conducting drop calculated from the electrohydrostatic theory until the
steady-state shape no longer exists. Thus, the largest electric capillary number for the
deformation curve in figure 1(a) corresponds to the critical electric capillary number
for the existence of a steady-state solution. The experimental data represented by
various symbols are also collected until the steady-state shape disappears. The asterisk
which appears in the figure represents the critical capillary number, Cc, estimated from
the O(C2) asymptotic solution for the drop shape (Ha 1999). As noted from figure 1(a),
both the numerical and asymptotic analytical results agree well with the experimental
results, especially when the degree of deformation is quite small. However, as the
drop deforms further, a slight discrepancy between theory and experiment appears.
The linearized asymptotic solution underestimates the degree of deformation whereas
the numerical prediction slightly overestimates it. Many investigators have reported
the critical electric capillary numbers for a perfectly conducting drop; some are
summarized in table 2. The critical electric capillary numbers predicted by various
methods are in good agreement with the experimental observation in this case.

In figure 1(b), the degree of deformation is plotted for another highly conducting
drop, polyvinylpyrrolidone dissolved in water–ethyl alcohol (N1) dispersed in various
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Methodology Cc Dc

Minimum energy principle 0.205 0.289
Taylor (1964, spheroidal approximation) 0.210 0.310
Miksis (1981, numerical method) 0.209 0.293
Sherwood (1988, boundary-integral method) 0.206 0.259
Basaran & Scriven (1989, FEM) 0.207 0.291
Feng & Scott (1996, FEM) 0.210 0.270
O(C2) asymptotic solution 0.147 0.109
Experiments 0.214 0.220

Table 2. The camparison of published critical capillary number (Cc) and corresponding degree of
drop deformation (Dc) for perfectly conducting drop. Experimentally determined values are averages
of experiments NN1 to NN7.

silicone oils. The deformation curves of N1 drops determined by experiments are
slightly different from those shown in figure 1(a). This is because the conductivity of
drop N1 is lower than those in figure 1(a), i.e. in this case, R ∼ O(10−5). However,
the electrohydrostatic theory of Feng & Scott (1996) for a perfectly conducting drop
still provides a fairly good approximation to the drop deformation. When the drop
conductivity decreases further, the deviation is expected to be greater. In figures 1(c)
and 1(d), the deformation curves are plotted for R ∼ O(10−4). Indeed, as seen from
figure 1(c), experimental results for conducting drops of glycerine–ethanol mixture
(N2) immersed in silicone oils deviate significantly from those for a perfectly con-
ducting drop although the drops can be still considered conducting. In this case, the
critical electric capillary numbers of conducting drops are higher than those of highly
conducting drops and the numerical electrohydrostatic solution underestimates the
critical value significantly. Meanwhile, as noted from figure 1(d), the deformation
behaviour of conducting drops either of a glycerine–propanol mixture (N3) or of
polyvinylpyrrolidone solution in N3 (N3A, N3B, and N3C) deviates slightly from the
deformation response of the highly conducting drops in figure 1(b). In this case, the
critical capillary number predicted from the numerical simulation of Feng & Scott
(1996) is slightly lower than the experimental value. Thus, although the drop deforma-
tion is strongly influenced by the resistivity ratio R, the difference between R ∼ O(10−5)
and R ∼ O(10−4) is not sufficiently large to override the effects arising from the other
electrical and interfacial properties. It is noteworthy that when the drop is conducting
or highly conducting, i.e. when R < O(10−4), the electric-field-driven flow is very
weak, especially prior to the drop burst. Consequently, the experimental results show
that the viscosity ratio is not an important parameter because its effect on the drop
deformation is very small in this weak flow. The relative deviations of the experimen-

Figure 1. Degree of deformation a drop as a function of the electric capillary number C in the
case of a conducting drop. (a) Drops of deionized water and KCl aqueous solution in silicone
oil (the dashed line is the O(C2) theory and the asterisk represents the critical capillary number
estimated from linear stability analysis); (b) drops of PVP dissolved in water–ethyl alcohol mixture
(N2) in silicone oils; (c) drops of glycerine–ethyl alcohol mixture (N2) in silicone oils; (d) drops
of glycerine–propanol mixture (N3) and Newtonian PVP (N3A, N3B, N3C) in silicone oil D;
(e) castor oil drops in silicone oils. The solid lines are the computational curves of Feng & Scott
(1996) from the electrostatic theory for a perfectly conducting drop; the dotted lines are the
first-order asymptotic leaky dielectric theory of Taylor. Details are given in table 1.
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tal critical capillary numbers for conducting drops are within 20% of the theoretical
prediction of Cc = 0.210 for a perfectly conducting drop (Feng & Scott 1996).

Let us now consider the deformation and breakup of a drop with conductivity
comparable to the continuous phase. In figure 1(e), the deformation curve is plotted
for R ∼ O(10−1). In this case, unfortunately, numerical solutions which exactly reflect
our experimental conditions are not available. Thus, we included again here the
numerical deformation curve for a perfectly conducting drop to examine the degree
of deviation from the case for a slightly conducting drop. Also shown for illustration is
the asymptotic curve from leaky dielectric theory. As expected, the numerical solution
for a perfectly conducting drop deviates significantly from the experimental results
for a slightly conducting drop even at small deformations.

For a highly conducting drop, the electric-field-driven flow is sufficiently weak
that the total energy of the system comes mainly from the interfacial and electrical
contributions. In this case, the degree of deformation at a given capillary number is
determined from the condition of minimum total energy at equilibrium considering
only the electrical and interfacial contributions. Thus, the behaviour of a highly
conducting drop can be well described by a single master deformation curve, which
is expressed in terms of the degree of deformation versus C. In general, the critical
electric capillary number depends on the resistivity ratio (R) and is a weak function
of both the viscosity ratio (λ) and the permittivity ratio (S ). It is known, at least
numerically, that a generic electrohydrostatic assumption with no fluid motions is
satisfactory when R < 10−5. This agrees well with the present experimental results.
Linear stability analysis based on the O(C2) small deformation theory shows that the
critical capillary number increases as R becomes larger than R ∼ 10−3, below which
it remains nearly constant (Ha 1999). The increase in R improves the drop stability,
which is also consistent with the experiments.

Although a number of experimental works concerning the deformation and breakup
of a Newtonian drop in a uniform electric field are available in literature, the full
deformation curve predicted from theory has not been tested yet. Comprehensive
and careful experiments were carried out by Torza et al. (1971) and Vizika & Saville
(1992), but they only confirmed the validity of theory within the small deformation
limit (approximately, D < 0.1 and C < 0.15). On the other hand, Moriya, Adachi &
Kotaka (1986) considered the behaviour of drops far beyond the small deformation
limit until the burst of the drop could be observed. In spite of the fact that some
of the fluids employed were highly concentrated polymeric solutions, the authors
did not pay any attention to the non-Newtonian characteristics. Previously, we have
confirmed that the behaviour of a highly conducting drop in an insulating medium
could be fairly well described by the theory for a perfectly conducting drop (Ha &
Yang 1998, 1999b). In the present work, we provide more reliable evidence about the
range of validity of the electrohydrostatic theory by considering a wide range of the
fluid properties.

In fact, our experimental results seemed to agree perfectly with the small defor-
mation theory, while the results of Torza et al. and Vizika & Saville deviated from
theory considerably in some systems. However, this does not imply that their results
are incorrect. Torza et al. and Vizika & Saville determined interfacial tensions by
independent static means rather than by small deformation theory. The discrepancy
of their results may arise from the interfacial tensions they used. In this study, how-
ever, the interfacial tension was determined from the small deformation theory as an
adjustable parameter. Furthermore, in the plots of Torza et al. and Vizika & Saville,
the degree of drop deformation was expressed as a function of aE2. By doing this,
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Figure 2. Critical capillary numbers, Cc, for each system (see table 1) as a function of the viscosity
ratio λ. The dotted line is the perfectly conducting limit predicted by Feng & Scott (1996) from the
numerical simulations.

a slight difference in the value of interfacial tensions produced a deviation from
theory even in the small deformation limit although the data set preserved linearity.
In contrast, since we obtained the interfacial tensions from the linear theory, our data
sets agreed with the theory exactly in the small deformation limit. Selected data sets
of Vizika & Saville for highly conducting drops were plotted again by Feng & Scott
(1996) as a function of the dimensionless quantity which was equivalent to the electric
capillary number used here. In this plot, the data sets were coincident with the theory
very accurately within the small deformation limit of D < 0.05. In this region, both
the leaky dielectric theory and the numerical calculation provided an excellent predic-
tion. The present results contained in figures 1(b)–1(e) showed that the deformation
behaviour of a conducting or slightly conducting drop deviated considerably from
the linear theory or numerical calculations for a perfectly conducting drop. This was
because the drop fluids did not behave like a perfectly conducting fluid. Thus, the
electrohydrostatic theory fails to predict the deformation behaviour of a conducting
or slightly conducting drop. In this case, the electric-field-induced flow is appreciable
compared to the case of a highly conducting drop.

In figure 2, the critical electric capillary numbers measured from the present
experiments are summarized. The dotted line corresponds to a perfectly conducting
drop. As mentioned earlier, the critical capillary numbers are nearly independent of
the viscosity ratio and increase when the resistivity ratio R approaches unity. It can
be also noted again from figure 2 that the electrohydrostatic theory is valid when the
resistivity ratio R is smaller than 10−5.

3.3. Breakup modes of Newtonian drops

In figures 3–7, typical images of bursting Newtonian drops are reproduced. The first
breakup mode shown in figure 3 was usually observed in the case of highly conducting
drops such as deionized water or potassium chloride aqueous solution. As seen, a
highly conducting water drop in silicone oil A (R < 10−6) is initially elongated into an
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Figure 3. Breakup of a water drop in silicone oil A (system NN2 in table 1). The radius of the
initial spherical drop is 0.25 cm and the applied electric field strength is 3.2 kV cm−1 (C = 1.1Cc).
The frame rate is 15 frames s−1.

ellipsoidal shape until it forms a rod with rounded ends (frames 1–50). About 4 s after
the electric field has been changed, a single pinching region is developed in the rod
section of the drop (frame 60). Shortly after the development of a pinching region, the
drop deformation suddenly starts to increase rapidly, and the bulbous ends split into
two main parts joined by a thread (frames 60–68). Subsequently, the thread breaks into
a number of small drops (frame 72). Consequently, a highly conducting water drop
in silicone oil A is fractured into two relatively large daughter drops and several tiny
satellite drops. This type of breakup in an electric field has been reported frequently
for highly conducting drops: for instance, a water–sextol phthalate system (Allan &
Mason 1962), water–castor oil system (Torza et al. 1971) and water–silicone oil system
(Ha & Yang 1998). In figure 4, electric burst is illustrated by the cinematographs
for another highly conducting drop, N1 in silicone oil D. In this case, the resistivity
ratio R is less than 10−5. Although the N1 drop possesses slightly lower conductivity
than the water drop considered in figure 3, the general features of drop breakup are
changed significantly. In the initial stage, the N1 drop deforms into an elongated
ellipsoid, similarly to the water drop. It can be readily seen, however, that the N1
drop deforms very slowly compared to the water drop until it reaches a certain degree
of deformation (frame 139). Immediately after reaching the critical deformation, the
drop begins to stretch rapidly, but the ends bulb suddenly and the development of
a pinching region near each bulbous end is evident (frame 140). Then, the blob at
each end moves further away and the constricted regions become narrower, thereby
forming a neck that joins the main body. As time proceeds, the neck pinches and
eventually breaks into a few small satellite drops leaving two daughter drops at the
ends and a large main body in the mid-part (frame 142). Therefore, the end-pinching
mechanism leads to drop breakup.

Now let us then consider the electric-field-induced burst of a conducting N3 drop in
silicone oil D for which R ∼ 10−4. As noted from figure 5, the droplet also fragments
according to the end-pinching mechanism (frames 510 and 550). However, after the
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Figure 4. Breakup of an N1 drop (PVP dissolved in water–ethyl alcohol mixture) in silicone oil D
(NN6 in table 1). The radius of the initial spherical drop is 0.14 cm and the applied electric field
strength is 4.5 kV cm−1 (C = 1.2Cc). The frame rate is 15 frames s−1.

first pinch-off, in this case, the main mid-part stretches into a thin thread rather than
relaxes into an ellipsoid like the highly conducting N1 drop considered in figure 4.
Then, the thin thread in the mid-part fragments into a few small droplets due to the
capillary instability (frames 730–850). Electric-field-induced breakup of the slightly
conducting castor oil drops in silicone oils is displayed in figures 6 and 7. In this
case, the resistivity ratio R ∼ 0.1. As noted, the global burst features of the slightly
conducting drops are similar to those of the conducting N3 drop. It is also noted from
figures 5–7 that the size of the two bulbous ends decreases and a larger fraction of the
drop remains in the main mid-part as the conductivity of the drop phase is reduced.
After the two ends tear off, the remainder of the drop is elongated continuously and
eventually broken up into several drops, similarly to the breakup of a highly extended
thin liquid thread.

As previously mentioned, the general features of the drop deformation are not
significantly influenced by the viscosity ratio prior to the drop burst, see figure 1(e).
However, the viscosity ratio is an important parameter in the mode of the drop
breakup. This is because the fluid motions inside and outside a slightly conducting
drop become relatively significant, when the electric field is strong enough to induce
drop breakup. The role of viscosity ratio in the drop breakup mode can be seen from
comparing figures 6 and 7, which correspond to the viscosity ratio λ = 0.080 and
0.874, respectively. The initial stage of drop breakup looks similar, independently of
the viscosity ratio. For the less viscous drops (NN17), the breakup mode was nearly
the same as in figure 5. In contrast, for a fluid pair with comparable viscosities, the
breakup proceeded differently: for example, a castor oil drop in comparably viscous
silicone oil (i.e. NN20 and NN21) showed a breakup mode different from the case
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Figure 5. Breakup of an N3 drop (glycerine–propanol mixture) in silicone oil D (NN13 in table 1).
The radius of the initial spherical drop is 0.11 cm and the applied electric field strength is 3.1 kV cm−1

(C = 1.1Cc). The frame rate is 14 frames s−1.

of castor oil drop in highly viscous silicone oil. As shown in figure 7 for NN21, the
castor oil drop elongated into a thin thread with sharply pointed ends in a comparably
viscous medium. Several pinching necks (or waists) were also formed. Although the
drop ends become pointed, we do not refer this mode to tip streaming. Tip steaming
is usually defined as a breakup mode of a drop possessing ellipsoidal shape with
pointed ends during the breakup process, as we shall see in the next section. A similar
phenomenon was observed for the more conducting drops of PVP solution dissolved
in glycerine–propanol mixture (NN16) with conductivities about a thousand times as
large as castor oil.

For highly conducting drops, Torza et al. called the breakup ‘electric burst’ since
there was no appreciable electrohydrodynamic flow inside and outside the drop. In this
case, the breakup occurs when the interfacial tension can no longer support the normal



Drop deformation and breakup in an electric field 145

Figure 6. Breakup of a castor oil drop in silicone oil A (NN17 in table 1). The radius of the initial
spherical drop is 0.13 cm and the applied electric field strength is 3.7 kV cm−1 (C = 1.2Cc). The
frame rate is 15 frames s−1.

electric stress. While many computational results for predicting the critical capillary
number are available, numerical simulations of the shape evolution in the course of
breakup are relatively limited. Using a boundary integral method, Sherwood (1988)
examined the deformation of a drop over a wide range of permittivity and conductivity
ratios but with the viscosity ratio fixed at unity. It is suggested that there are two
modes of breakup: pointed end formation when the ratio S of the permittivity of the
drop phase to that of the surrounding fluid is much greater than unity, and bulbous
end formation connected by a thin thread with several pinching necks when the
conductivity ratio is much greater than unity. As the conductivity of the drop increases,
the number of necks is decreased (Sherwood 1988). This may explain the distinctively
different breakup modes observed in figures 3 to 6. However, these experimental data
do not clarify whether the conductivity ratio is entirely responsible for this type of
breakup, as suggested by Sherwood for the fluid pairs of identical viscosities.
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Figure 7. Breakup of a castor oil drop in silicone oil E (NN21 in table 1). The radius of the initial
spherical drop is 0.16 cm and the applied electric field strength is 3.2 kV cm−1 (C = 1.1Cc). The
frame rate is 15 frames s−1.

Even for the breakup of a highly conducting drop, the reported results seem
conflicting and/or inconclusive. In some investigations, highly conducting drops were
broken up via tip streaming or pointed end formation. Moriya et al. investigated two
classes of breakup mode depending on the dispersed-phase viscosity. Less viscous
water droplets burst by tip streaming. However, they used a polymeric solution
(30 wt% solution of polystyrene in di-n-butyl phthalate). As we shall see later, the
deformation behaviour of a highly conducting drop can be significantly influenced
by the non-Newtonian properties. Nishiwaki, Adachi & Kotaka (1988) also reported
the breakup of highly conducting polypropylene oxide drops in polydimethylsiloxane
with various viscosity ratios. Their results are consistent with ours. The breakup
modes for less viscous drops and for more or comparably viscous drops are similar
to figures 6 and 7, respectively.

4. Effect of non-Newtonian properties on the drop deformation and
breakup

4.1. Polymeric liquids used in this study

In this section, we examine the deformation and breakup of polymeric liquid drops
and discuss the effect of non-Newtonian properties from an electrohydrostatic point
of view, which has been rigorously tested in the previous section. In doing this, the first
step is to identify the parameters that are appropriate to characterize the fluids in an
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Class Abbreviation Formulation Viscosity (Pa s)

Elastic PIB0 Mixture of polybutene and o-dichlorobenzene 1.586
7:3 by volume

PIB1 0.5 wt% PIB solution in PIB0 2.307
PIB2 1.0 wt% PIB solution in PIB0 2.617
PAM1 1.5 wt% PAM solution in 0.1 M NaCl solution 0.485
PAM2 2 wt% PAM solution in 0.1 M NaCl solution 3.018
PAM3 3 wt% PAM solution in 0.1 M NaCl solution 11.840

Viscoelastic XAN1 250 p.p.m. xanthan gun solution in XAN0 0.059
XAN2 500 p.p.m. xanthan gum solution in XAN0 0.299
XAN3 1000 p.p.m. xanthan gum solution in XAN0 0.658
XAN4 2000 p.p.m. xanthan gum solution in XAN0 1.962
XAN5 3000 p.p.m. xanthan gum solution in XAN0 7.087
XAN6 4000 p.p.m. xanthan gum solution in XAN0 27.980

Table 3. Formulation and abbreviation of polymeric liquids used in the experiments. XAN0
stands for the mixture of deionized water and N, N-dimethylformaide.

electric-field-induced flow. For these experiments, we initially classified the polymeric
liquids into two broad categories. One is purely elastic fluids, which exhibit an elastic
fluid response such as normal stress differences in shear flow but an approximately
shear-independent viscosity. Purely elastic fluids are often referred to as ‘Boger fluids’
or ‘second-order fluids’. The other category is fully viscoelastic fluids, which exhibit
both a shear-thinning viscosity and elasticity. It is often believed that we can draw
some conclusions on the effects of elasticity and shear-thinning viscosity on the drop
deformation and breakup problem simply from the fluid model classification. As we
shall see later, however, this general characterization does not give much insight into
the relationship between the observed drop behaviour and the fluid properties.

The non-Newtonian polymeric fluids used in these experiments are listed in table 3.
The hydrophobic and leaky dielectric polyisobutylene (PIB) solutions were used as
a continuous phase when the elastic properties of the medium were considered.
PIB0 had shear viscosities independent of the shear rate and exhibited no significant
normal stresses at a moderate shear rate, although it showed measurable normal
stress at higher shear rates. On the other hand, both PIB1 and PIB2, which imitate a
second-order fluid with shear-independent viscosity, exhibited considerable deviation
from Newtonian behaviour. In figure 8(a), the shear viscosities and the first normal
stress coefficients Π1 of these solutions are plotted as a function of the shear rate.
These solutions were prepared by the standard ‘Boger fluid’ preparation technique, i.e.
dissolution of a small amount of high-molecular-weight polymer in a viscous solvent
(Mackay & Boger 1987).

In order to examine the effect of non-Newtonian properties on the basis of the
electrohydrostatic assumption, we prepared aqueous polymer solutions containing
polyacrylamide (PAM, Mw = 5 × 106 including 1.5 wt% acrylic acid, Aldrich) or
xanthan gum (XAN, Aldrich) as the drop phase. Three purely elastic solutions were
prepared by following the preparation method proposed by Tam & Tiu (1989): the
small amount of high-molecular-weight PAM was dissolved in an aqueous 0.1M NaCl
solution. The viscosities and the first normal stress difference coefficients for these
fluids are plotted as a function of shear rate in figure 8(b) and their formulations are
reported in table 3. The viscosities of these polymeric solutions remained relatively
constant for shear rates less than about 1 s−1. Xanthan gum solutions were used
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Figure 8. Shear viscosity (filled symbols) and the first normal stress coefficient (open symbols) of
(a) elastic PIB solutions (the normal stress coefficient of PIB0 is not shown because it is too low to
measure at low shear rates); (b) elastic PAM solutions; (c) viscoelastic XAN solutions (the normal
stress coefficients of XAN1, XAN2, and XAN3 are too low to measure). For details see table 3.

in these experiments as fully viscoelastic fluids. These solutions exhibited significant
shear-thinning viscosity. The shear viscosities and the first normal stress coefficients
of xanthan gum solutions are shown in figure 8(c). Measurable normal stresses were
found only in solution XAN4, XAN5, and XAN6.

4.2. Deformation and breakup of polymeric liquid drops in a Newtonian fluid

Now, let us begin by considering the deformations of purely elastic drops in a New-
tonian fluid under the influence of a uniform electric field. The drop phases involved
in these experiments showed elastic properties, but shear-independent viscosities as
mentioned earlier. In addition, all of the drop phases considered in this section were
highly conducting fluids and the resistivity ratio R < O(10−5). In figure 9(a), the de-
gree of drop deformation is illustrated as a function of the electric capillary number
for these purely elastic drops. Also shown for comparison is the numerical solution
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Figure 9. Degree of deformation of polymeric drops in silicone oil as a function of C. (a) Elastic
PAM drops; (b) viscoelastic XAN drops. The solid line represents the numerical prediction for a
perfectly conducting drop calculated by Feng & Scott (1996) from the electrohydrostatic theory.
See table 4 for details.

curve for a perfectly conducting drop. As noted, the degree of deformation of a
highly conducting drop depends mainly on the electric capillary number. Obviously,
the experimental results for the purely elastic and highly conducting drops agree well
with the theory for the perfectly conducting drop only when the deformation is small.
Indeed, the parameters other than the capillary number such as the drop-phase elas-
ticity have no major influence on the drop deformation within the small deformation
limit. However, as the drop deformation proceeds (D > 0.1), the deviation from the
deformation behaviour of a highly conducting Newtonian drop becomes pronounced.
For a given capillary number, the degree of deformation of the purely elastic drop is
smaller than that of the purely viscous drop. As C increases, the numerical predictions
for the perfectly conducting drop deviate considerably from the experimental results.
Moreover, the critical capillary numbers of elastic drops are higher than that of the
highly conducting Newtonian drop. These suggest clearly that the elastic properties
of the drop phase suppress the drop deformation and tend to stabilize it.

Finally, the steady deformations of fully viscoelastic drops in a Newtonian medium
are illustrated in figure 9(b). The deformation curves in this plot are for drops of
three polymeric solutions (VN1, VN3, and VN6 in table 4) in silicone oil D. Also
included for an illustrative purpose is the deformation curve of a Newtonian drop
(XAN0) in silicone oil D. These four solutions have comparable electrical resistiv-
ities and permittivities but are highly conducting relative to the continuous phase.
Although measured data are slightly scattered, the linear dependence of the degree of
deformation on the electric capillary number is still preserved when the deformation
is small. It can also be noted that the drop is stabilized by its viscoelasticity.

4.3. Deformation and breakup of polymeric drops in a non-Newtonian fluid

Let us turn to the steady deformation of Newtonian or non-Newtonian drops sus-
pended in a non-Newtonian continuous phase in an electric field. The experimental
runs are summarized in table 5. We begin with Newtonian drops immersed in elastic
polyisobutylene solutions. The deformation behaviour can be found in figure 10(a).
Clearly, the result of this experimental run NE1 is in good agreement with the numer-
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Continuous Interfacial Breakup
Class System Drop Phase phase S λ tension (N m−1) mode

Elastic EN1 PAM1 SD 26.6 0.417 0.0281 T
EN2 PAM2 SD 26.6 2.5 0.0280 T
EN3 PAM3 SD 26.6 10 0.0280 T

Viscoelastic VN1 XAN1 SD 21.6 0.060 0.0146 N
VN2 XAN2 SD 21.6 0.305 0.0142 N
VN3 XAN3 SD 21.6 0.671 0.0134 T
VN4 XAN4 SD 21.7 2.002 0.0137 T
VN5 XAN5 SD 21.6 7.230 0.0139 T
VN6 XAN6 SD 21.6 28.55 0.0155 T

Table 4. The list of experimental runs for the deformation and breakup of polymeric liquid drops
suspended in Newtonian fluid. R < 10−6. For the breakup modes, N and T stand for Newtonian-like
breakup and tip streaming, respectively.

ical predictions for a highly conducting drop mentioned previously since the elasticity
of PIB0 is negligible. The results included in figure 10(a) strongly indicate that the
non-Newtonian properties, more specifically the elasticity of the continuous phase,
stabilize the drop phase.

During the past decade, considerable efforts have focused on the breakup of
viscoelastic drops in a Newtonian medium or Newtonian drops in a viscoelastic
liquid which possesses both a non-Newtonian viscosity and appreciable elasticity.
However, the effect of fluid elasticity was not understood completely for systems of
viscoelastic fluids. Part of the problem arises from the fact that viscoelastic fluids
may have both a non-Newtonian viscosity and elasticity, which may have a non-
trivial effect on drop breakup. Milliken & Leal (1991) showed that the viscoelastic
drops experienced deformation closely similar to that of Newtonian drops or were
slightly stabilized for λ > O(1). However, when λ < O(1), the viscoelastic drops were
significantly destabilized compared with the Newtonian drops. Evidently, at a certain
viscosity ratio around unity, the elasticity of the drop phase reversed its effect from
stabilizing to destabilizing the drop. According to Milliken & Leal and Varanasi,
Ryan & Stroeve (1994), this occurs when the viscosity ratio lies between 0.1 and 1.

As illustrated in figure 10(b), when the viscosity ratio is around 0.2, the non-
Newtonian properties of the two contiguous fluids do not play a major role in the
drop deformation in our experiments. Although the continuous phase of PIB0 exhibits
considerable normal stress differences at high shear rates, the normal stress differences
for the drop phases in figure 10(b) are not large enough at low or moderate shear
rates. As a consequence, the two phases are assumed to have negligible normal stress
differences at low shear rates. It can be seen from figure 10(b) that elasticity of the
continuous phase enhances the drop stability slightly. If the viscosity ratio is adjusted
more carefully, the effect of viscoelasticity on the drop stability may be diminished.
It is, thus, obvious that the results contained in figure 10(b) are consistent with the
previous works on the stability of non-Newtonian fluid drops in a flow field.

In figure 10(c), the steady deformation is plotted versus the electric capillary number
for purely elastic drops suspended in a non-Newtonian continuous phase. In these
experimental runs, the viscosity ratios are slightly higher than unity. It is interesting
to note that elasticity of the continuous phase destabilizes the non-Newtonian drop.
For the case in which both the fluids are non-Newtonian, the controlling parameter in
determining the drop stability is the ratio of the normal stress coefficients between the
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Figure 10. Degree of deformation of polymeric drops in elastic PIB as a functionc of C. (a)
XAN0 drops; (b) XAN2 drops; (c) PAM2 drops; (d) XAN6 drops. The solid line represents the
numerical prediction for a perfectly conducting drop calculated by Feng & Scott (1996) from the
electrohydrostatic theory. See table 5 for details.

drop and the continuous phases. As the ratio increases, the drop becomes more stable.
In figure 10(d), the degree of deformation is plotted versus the capillary number for
the viscoelastic drops in the purely elastic fluids. The deformation behaviour of the
viscoelastic drops is quite similar to that of the elastic drops. In this case, thus, as the
continuous phase has greater elasticity, the drop becomes less stable.

So far, we have investigated the steady deformation and the critical capillary
number of polymeric liquid drops immersed in a Newtonian or non-Newtonian
fluid. In summary, the stability of the drop is enhanced when either the drop or
the continuous phase is non-Newtonian. Moreover, when both the drop and the
continuous phase are non-Newtonian, the drop becomes more stable when the normal
stress coefficient ratio increases. It is also found that when the viscosity ratio is larger
than about 0.2, elasticity of the continuous phase destabilizes whereas the drop-phase
elasticity stabilizes the drop. When the viscosity ratio is smaller than 0.2, the trend
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Continuous Interfacial Breakup
Class System Drop phase phase S λ tension (N m−1) mode

Newtonian NE1 XAN0 PIB0 15.4 0.0005 0.0107 N
NE2 XAN0 PIB1 15.4 0.0004 0.0109 N
NE3 XAN0 PIB2 15.4 0.0003 0.0114 N

Elastic EE1 PAM1 PIB0 19.0 0.33 0.0222 T
EE2 PAM2 PIB0 19.0 2 0.0239 T
EE3 PAM3 PIB0 19.0 8 0.0279 T
EE4 PAM1 PIB1 19.0 0.23 0.0233 T
EE5 PAM2 PIB1 19.0 1.364 0.0267 T
EE6 PAM3 PIB1 19.0 5.46 0.0302 T
EE7 PAM1 PIB2 19.0 0.185 0.0254 T
EE8 PAM2 PIB2 19.0 1.11 0.0279 T
EE9 PAM3 PIB2 19.0 4.44 0.0307 T

Viscoelastic VE1 XAN2 PIB0 15.4 0.20 0.0109 N
VE2 XAN6 PIB0 15.4 20 0.0099 T
VE3 XAN2 PIB1 15.4 0.136 0.0126 T
VE4 XAN6 PIB1 15.4 13.6 0.0181 T
VE5 XAN2 PIB2 15.4 0.111 0.0130 T
VE6 XAN6 PIB2 15.4 11.1 0.0212 T

Table 5. The list of experimental runs for the deformation and breakup of drops suspended in
non-Newtonian fluid. R < 10−5. For the breakup modes, N and T stand for Newtonian-like breakup
and tip streaming, respectively.

is reversed. However, from the experimental observations reported here, it is found
that the broad classification of polymeric solutions proposed in this study does not
give much insight into the relationship between the observed drop behaviour and the
fluid properties. This is because the electric-field-induced flow is weak, prior to the
drop burst. As we shall see shortly, however, the non-Newtonian properties play a
significant role during drop breakup in which large velocities and velocity gradients
occur. This complicates the physics of modes of drop breakup and makes some results
appear contradictory or confusing.

4.4. Effect of non-Newtonian properties on the breakup mode

When either the drop or the continuous phase is non-Newtonian, the drop exhibited
distinctively different burst behaviour from that of Newtonian drops discussed in § 3.
For illustration, microphotographs of the breakup of XAN6 drop in silicone oil D
are reproduced in figure 11 for C = 1.1Cc. It can be clearly seen from figure 11 that
the drops experienced tip steaming. The drop stretched slightly and the ends became
sharply curved. As time proceeded, the ends became nearly pointed and then cusped.
Immediately after the pointed ends were formed, a thin thread or small subdrops of
fluid were ejected from the ends. The ends of the drop then retracted and the drop was
restored to an ellipsoidal shape with pointed ends. Further increase in electric field
strength induced the process of tip streaming again. Stretching of the drop to a large
aspect ratio was not achieved. Throughout the process, fore-and-aft symmetry of the
drop was not always maintained in our experiments. In many cases, tip streaming
occurred only at one end of the drop. The droplets may lose their symmetrical
shape because of traces of surface contaminants which inevitably lead to the non-
homogeneity of interfacial properties (Ha & Yang 1995). In studies of hydrodynamic
burst, Milliken & Leal (1991) suggested that in polymeric drops the nonlinearity of the
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Figure 11. Microphotographs of tip streaming of an XAN6 drop in silicone oil D. The radius of
the initial spherical drop is 0.27 cm and the applied electric field strength is 5.1 kV cm−1 (C = 1.1Cc).
The frame rate is 15 frames s−1.

stress–strain relationship renders the drop shape more sensitive to slight asymmetries
in the flow field and that this causes the absence of fore-aft symmetry. This may be
also true of the electric-field-induced burst of non-Newtonian drops.

Based on the results obtained for Newtonian-fluid pairs, it may be deduced that tip
streaming observed in this study is caused by the non-Newtonian properties of the
fluids. Also noted from comparison of experiments VN2 and VE3 (or VE5) is that the
non-Newtonian properties of the continuous phase also induced tip streaming of a
Newtonian drop. However, the mechanism is somewhat unclear to us. With regard to
the tip streaming of polymeric liquid drops in an extensional flow field, Milliken & Leal
(1991) suggested that the nonlinearity of the stress–strain relationship which rendered
the drop shape more sensitive to slight asymmetries in the flow was responsible
for the tip streaming. It has been also suggested that the tip streaming might be a
consequence of the polymer molecules acting as amphiphilic low-molecular-weight
surfactant molecules rather than being caused by some modification of the bulk
rheology (Stone 1994). In substance, the water-soluble polymer used in this study
acted like a surface-active agent. The addition of very small amount of polymer
decreased the interfacial tension slightly. However, the effect of polymer molecules
on the drop breakup mode is obviously different from that of low-molecular-weight
surfactants. When the concentration of surfactant molecules was high enough, the
breakup mode changed from tip streaming to the usual mode of a highly conducting
Newtonian drop again. This phenomenon was observed in the experiments carried
out in previous studies in an electric field (Ha & Yang 1998) and in a flow field
(Bentley & Leal 1986; Stone & Leal 1989; de Bruijn 1993). Consequently, it can be
concluded that the tip streaming results from the non-Newtonian properties of the
constituent fluids, at least when the amount of dissolved polymer is considerable.
Of course, in the case where a very small amount of polymer is dissolved, it may
be reasonable to regard the polymer molecules as a surface-active agent since the
non-Newtonian characteristics of the fluids are not so significant. This is especially
true if the polymer molecules absorb on the interface.
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5. Summary

In the present study, the deformation and breakup of Newtonian or non-Newtonian
fluid drops in an external electric field have been studied. The continuous phase is
either a Newtonian or non-Newtonian fluid. For Newtonian-fluid pairs, the electrohy-
drostatic assumption is valid when R < O(10−5). Under this condition, the behaviour
of a highly conducting drop agreed well with the numerical solution for a perfectly
conducting drop in an insulating phase. Although the breakup mode of Newtonian
drops is slightly influenced by the resistivity and viscosity ratios, R and λ, the overall
features can be stated as follows. When the drop phase is highly conducting and much
less viscous, the drop is fragmented via formation of bulbous ends and a thin waist.
The appearance of bulbous ends shows that the highly viscous medium suppresses
the formation of pointed ends. As the drop-phase conductivity decreases, the size of
the bulb-like ends decreases and most of the drop volume remains in the mid-part. As
the viscosity ratio increases up to O(1), the shape of the drop ends becomes sharply
pointed. In order to examine the effect of elasticity and shear-thinning viscosity sep-
arately, we classified the fluids into two broad categories: elastic and viscoelastic. It
is found that the shear-rate dependence of viscosity is not effective in altering the
behaviour of the drop phase. This is because the fluid motion induced by an electric
field is too weak to induce a significant rheological response. The effect of non-
Newtonian properties of the constituent fluids on the stability of highly conducting
drops can be summarized as follows. When the viscosity ratio is larger than unity,
elasticity of the drop phase enhances the drop stability. Equivalently, as the elasticity
of the continuous phase increases, the drop becomes unstable. If the viscosity ratio
is much smaller than unity, elasticity of the continuous phase produces stabilizing
effects. The exchange from a stabilizing to destabilizing effect of the non-Newtonian
continuous phase occurs when the viscosity ratio λ is around 0.2. In addition, the
present experiments show that non-Newtonian properties of the fluids induce tip
streaming. When both of two phases are non-Newtonian fluids, tip streaming is the
prevalent mode of the drop breakup.

This work has been supported partly by the Ministry of Science and Technology
and by a contracted research project with Hyundai Heavy Industries Co., Ltd. The
authors appreciate their support.
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